Zweiphasenströmungen
Gudrun hatte zwei Podcast-Gespräche beim FEniCS18 Workshop in Oxford (21.-23. März 2018). FEniCS ist eine Open-Source-Plattform zur Lösung partieller Differentialgleichungen mit Finite-Elemente-Methoden.
Dies ist die zweite der beiden 2018er Folgen aus Oxford.
Susanne Claus ist zur Zeit NRN Early Career Personal Research Fellow an der Cardiff University in Wales. Sie hat sich schon immer für Mathematik, Physik, Informatik und Ingenieursthemen interesseirt und diese Interessen in einem Studium der Technomathematik in Kaiserlautern verbunden. Mit dem Vordiplom in der Tasche entschied sie sich für einen einjährigen Aufenthalt an der Universität Kyoto. Sie war dort ein Research exchange student und hat neben der Teilnahme an Vorlesungen vor allem eine Forschungsarbeit zu Verdunstungsprozessen geschrieben. Damit waren die Weichen in Richtung Strömungsrechnung gestellt. Dieses Interesse vertiefte sie im Hauptstudium (bis zum Diplom) an der Uni in Bonn, wo sie auch als studentische Hilfskraft in der Numerik mitarbeitete. Die dabei erwachte Begeisterung für nicht-Newtonsche Fluid-Modelle führte sie schließlich für die Promotion nach Cardiff. Dort werden schon in langer Tradition sogenannte viskoelastische Stoffe untersucht - das ist eine spezielle Klasse von nicht-Newtonschem Fluiden. Nach der Promotion arbeitet sie einige Zeit als Postdoc in London am University College London (kurz: UCL) zu Fehleranalyse für Finite Elemente Verfahren (*). Bis sie mit einer selbst eingeworbenen Fellowship in der Tasche wieder nach Cardiff zurückkehren konnte.
Im Moment beschäftigt sich Susanne vor allem mit Zweiphasenströmungen. In realen Strömungsprozessen liegen eigentlich immer mindestens zwei Phasen vor: z.B. Luft und Wasser. Das ist der Fall wenn wir den Wasserhahn aufdrehen oder die Strömung eines Flusses beobachten. Sehr häufig werden solche Prozesse vereinfacht modelliert, indem man sich nur eine Phase, nämlich die des Wassers genau ansieht und die andere als nicht so wichtig weglässt.
In der Modellbildung für Probleme, in denen beide Phasen betrachtet werden sollen, ist das erste Problem, dass das physikalische Verhalten der beiden Phasen sehr unterschiedlich ist, d.h. man braucht in der Regel zwei sehr unterschiedliche Modelle. Hinzu treten dann noch komplexe Vorgänge auf der Grenzflächen auf z.B. in der Wechselwirkung der Phasen. Wo die Grenzfläche zu jedem Zeitpunkt verläuft, ist selbst Teil der Lösung des Problems.
Noch interessanter aber auch besonders schwierig wird es, wenn auf der Grenzfläche Tenside wirken (engl. surfactant) - das sind Chemikalien die auch die Geometrie der Grenzfläche verändern, weil sie Einfluß auf die Oberflächenspannung nehmen. Ein Zwischenschritt ist es, wenn man nur eine Phase betrachtet, aber im Fließprozess eine freie Oberfläche erlaubt. Die Entwicklung dieser Oberfläche über die Zeit wird oft über die Minimierung von Oberflächenspannung modelliert und hängt deshalb u.a. mit der Krümmung der Fläche zusammen. D.h. man braucht im Modell lokale Informationen über zweite Ableitungen.
In der numerischen Bearbeitung des Prozesses benutzt Susanne das FEniCS Framework. Das hat sie auch konkret dieses Jahr nach Oxford zum Workshop geführt. Ihr Ansatz ist es, das Rechengitter um genug Knoten anzureichern, so dass Sprünge dargestellt werden können ohne eine zu hohe Auflösung insgesamt zu verursachen.
(*) an der UCL arbeitet auch Helen Wilson zu viscoelastischen Strömungen, mit der Gudrun 2016 in Oxford gesprochen hat.
Literatur und weiterführende Informationen
- S. Claus & P. Kerfriden: A stable and optimally convergent LaTIn-Cut Finite Element Method for multiple unilateral contact problems, CoRR, 2017.
- H. Oertel jr.(Ed.): Prandtl’s Essentials of Fluid Mechanics, Springer-Verlag, ISBN 978-0-387-21803-8, 2004.
- S. Gross, A. Reusken: Numerical Methods for Two-phase Incompressible Flows, Springer-Verlag, eBook: ISBN 978-3-642-19686-7, DOI 10.1007/978-3-642-19686-7, 2011.
- E. Burman, S. Claus & A. Massing: A stabilized cut finite element method for the three field Stokes problem. SIAM Journal on Scientific Computing 37.4: A1705-A1726, 2015.
Podcasts
- G. Thäter, R. Hill: Singular Pertubation, Gespräch im Modellansatz Podcast, Folge 162, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.
- H. Wilson: Viscoelastic Fluids, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 92, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.