Isoperimetrische Probleme

Moritz Gruber hat an unserer Fakultät eine Doktorarbeit zu isoperimetrischen Problemstellungen verteidigt und spricht mit Gudrun Thäter über sein Forschungsgebiet. Ein sehr bekanntes Beispiel für ein solches Problem kommt schon in der klassische Mythologie (genauer in Vergils Aeneis) als Problem der Dido vor. Vergil berichtet, dass Dido als Flüchtling an Afrikas Küste landete und sich so viel Land erbat, wie sie mit der Haut eines Rindes umspannen kann. Was zunächst wie ein winziges Fleckchen Erde klingt, wurde jedoch durch einen Trick groß genug, um die Stadt Karthago darauf zu gründen: Dido schnitt die Tierhaut in eine lange Schnur. Das mathematische Problem, dass sich ihr anschließend stellte und das als Didos oder isoperimetrisches Problem bezeichnet wird ist nun: Welche Fläche mit einem Umfang gleich der vorgegebenen Schnurlänge umfasst den größten Flächeninhalt?

Natürlich wird dieses Problem zunächst etwas idealisiert in der Euklidischen Ebene gestellt und nicht in der konkreten Landschaft Karthagos. Es ist ein schwieriges Problem, denn man kann nicht alle Möglichkeiten ausprobieren oder einfach die Fälle durchkategorisieren. Andererseits liegt die Vermutung sehr nahe, dass der Kreis die Lösung ist, denn man kann sich schnell überzeugen, dass Symmetrien ausgenutzt werden können, um die eingeschlossene Fläche zu maximieren. Der Kreis hat unendlich viele Symmetrieachsen und schöpft diese Konstruktion deshalb gut aus.

Trotzdem war ein stringenter Beweis erst im 18. Jh. mit den bis dahin entwickelten Methoden der Analysis möglich. Unter anderem mussten Verallgemeinerungen des Ableitungsbegriffes verstanden worden sein, die auf dieses Optimierungsproblem passen.

Moritz Gruber interessiert sich für Verallgemeinerungen von isoperimetrischen Problemen in metrischen Räume, die in der Regel keinen Ableitungsbegriff haben. Die einzige Struktur in diesen Räumen ist der Abstand.

Eine Möglichkeit, hier Aussagen zu finden ist es, das Verhalten für große Längen zu untersuchen und das Wachstum von Flächen in Abhängigkeit vom Wachstum des Umfangs zu charakterisieren. Naheliegend ist eine Approximation durch umschriebene und einbeschriebene Quadrate als obere und untere Schranke für die Fläche, die tatsächlich umschlossen und nicht so einfach berechnet werden kann.

Außerdem interessieren ihn Verallgemeinerung auf Lie-Gruppen. Sie sind gleichzeitig differenzierbare Mannigfaltigkeit und Gruppe. Die Gruppenverknüpfung und Inversenbildung ist kompatibel mit der glatten Struktur.
Sogenannte nilpotente Lie-Gruppen sind den kommutativen (d.h. abelschen) Gruppen am nächsten und bieten ihm die Möglichkeit, dort Ergebnisse zu erhalten.

Die Übertragung der isoperimetrischen Probleme und mathematischen Methoden in höhere Dimensionen ergibt sehr viel mehr Möglichkeiten. In der Regel sind hier sind die unteren Schranken das schwierigere Problem. Eine Möglichkeit ist der Satz von Stokes, weil er Maße auf dem Rand und im Inneren von Objekten vernküpfen kann.


Literatur und weiterführende Informationen



Podcasts

  • L. Schwachhöfer: Minimalflächen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 118, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
  • P. Schwer: Metrische Geometrie, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 102, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.